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ABSTRACT
The Rapid Solution of the Laplace Equation on Regions

with Fractal Boundaries

Jin Hong Ma

Yale University

1992

Interest in the numerical solution of the Laplace equation on regions with fractal

boundaries arises both in mathematics and physics. In mathematics, examples in-

clude harmonic measure of fractals, complex iteration theory, and potential theory. In

physics, examples include Brownian motion, crystallization, electrodeposition, viscous

fingering, and diffusion-limited aggregation. In a typical application, the numerical

simulation has to be on a very large scale involving at least tens of thousands of equa-

tions with as many unknowns, in order to obtain any meaningful results. Attempts

to use conventional techniques have encountered insurmountable difficulties, due to

excessive CPU time requirements of the computations involved. Indeed, conventional

direct algorithms for the solution of linear systems require order O(N 3 ) operations for

the solution of an N x N- problem, while classical iterative methods require order

O(N 2 ) operations, with the constant strongly dependent on the problem in question.

In either case, the computational expense is prohibitive for large-scale problems. We

present a direct algorithm for the solution of the Laplace equation on regions with frac-

tal boundaries. The algorithm requires O(N) operations with a constant dependent

only on the geometry of the fractal boundaries. The performance of the algorithm

is demonstrated by numerical examples, and applications and generalizations of the

scheme are discussed.
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Chapter 1

Introduction

During the last decade, the numerical solution of the Laplace equation on regions with

fractal boundaries has been becoming increasingly popular both in mathematics and

physics. In mathematics, examples include harmonic measure of fractals, complex

iteration theory, and potential theory. In physics, examples include growth phenom-

ena such as crystallization, electrodeposition, viscous fingering, and diffusion-limited

aggregation, where the harmonic measure governs the growth of the fractal surfaces

[56]. Thus, much recent work has been focused on the study of the metric properties

of harmonic measure on fractals [5], [12], [33], [38], and [34].

1.1 Background

Carleson proved recently in [12] that the dimension of the support of harmonic mea-

sure for any two-dimensional Cantor set is strictly less than one . However, the actual

values for particular sets have not been determined, and it is unclear how they can

be, without some form of computer experimentation. In R 3, the behavior of harmonic

measure for Cantor sets is completely unknown. Thus, several attempts have been

made during the last several years to solve such problems numerically (see [5] and

[34]).
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There are two approaches to the study of the metric properties of the harmonic

measure on fractals.

1. Viewing the harmonic measure as the relative hitting probability at points on

the surface, and using the Monto Carlo method to conduct computer simulations

on parallel machines such as the Connection machine (see [5]).

2. Formulating the problem as an integral equation of the first kind, and using

brute force to solve it numerically.

While the first approach has produced some significant results (see [5]), the com-

putation becomes prohibitively expensive when high accuracy is desired, due to the

slow convergence of the Monto Carlo method (as is well known, the error of a Monto

Carlo simulation decays like 1//lN, where N is the number of trials).

On the other hand, the second approach has also encountered insurmountable

difficulties, due to excessive CPU time requirements of the computations involved.

Indeed, in order to obtain mathematically meaningful results, systems of linear equa-

tions have to be solved, involving at least tens of thousands of equations with as many

unknowns. Conventional direct algorithms for the solution of linear systems require

order O(N 3 ) operations for the solution of an N x N- problem, while classical itera-

tive methods require order O(N 2 ) operations, with the constant strongly dependent

on the problem in question. In either case, the computational expense is prohibitive

for large-scale problems.

We present a direct algorithm for the rapid solution of the Laplace equation on

regions with a certain type of fractal boundaries. The algorithm requires O(N) op-

erations with a constant dependent only on the geometrical property of the fractal

boundaries, where N is the number of elements in the discretization of the fractal.

And the evaluation of the potential at any point requires 0(log(N)) operations.
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1.2 Genealogy of Fast Algorithms

The algorithm of this thesis is closely related to other analysis-based fast algorithms.

Among them, perhaps the Fast Multipole Method (FMM) [25] is the best known. It

provides a fast scheme to evaluate gravitational and electrostatic potentials involving

a large number of particles. In [8], wavelets are used to generalize the FMM to a

variety ef integral operators. In [4], wavelets are combined with the Schultz algorithm

to solve integral equations of the second kind. Several other "fast" schemes have been

constructed, such as the algorithm of [27] for the rapid evaluation of Gauss transforms.

In [48], a fast direct solver is developed for the solution of integral equations in one

dimension. However, the latter algorithm substantially exploits the one-dimensional

geometry. While the algorithms of [25], [8], [4], [3], and [27] are essentially fast

algorithms for applying a matrix to a vector, our algorithm can be viewed as a fast

direct inversion scheme for the some of matrices of the type produced by the FMM.

1.3 Outline of the Dissertation

The direct algorithm presented in this thesis exploits the fact that far-field interactions

are of low rank for any given precision, and low rank operators can be recursively

compressed without actually generating them.

We begin with the definition of the problems to be addressed in Chapter 2. In

Chapter 3, we summarize ccrtain mathematical and numerical facts to be used in this

thesis. In Chapter 4, we establish the principal analytical tool of this thesis that ranks

of far-field interactions are finite to any given precision. In Chapter 5, we develop

the mathematical apparatus used to construct the fast algorithm by borrowing termi-

nology from the standard scattering theory for the IHelmholtz equation. In Chapter

6, we present the description of the fast algorithm, and in Chapter 7, we illustrate

the performance of the algorithm by numerical examples. Finally, in Chapter S, we

outline some applications and generalizations.



Chapter 2

Statement of the Problems

As is well-known, the governing equation for potential problems is the Laplace equa-

tion

AU -_ + -- = 0. (2.1)
Ox2  2y(

Functions which satisfy (2.1) are referred to as harmonic functions.

In this chapter, we define the problems to be addressed, namely, the boundary

value problems for the Laplace equation on regions with fractals of Cantor type as

the boundaries.

2.1 Fractal Boundaries

A fractal of ( ator type is a classical example of fractals (see, for example, [7], [16],

and [39]), which can be generated recursively by dividing a given region into four

corner regions (boxes) with a ratio of sides as a parameter.

Given a real number a (0 < a < 1 ), we define a sequence of sets as follows (See

Figures 2.1, 2.zi, and 2.3):

Co = { the unit square }, (2.2)

C' = 0 corner boxes with as their sizes }, (2.3)
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1

Figure 2.1: Set C'

Figure 2.2: Set C'
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C• = {41 corner boxes with a' as their sizes }, (2.4)

where I is an integer.

The Cantor set associated with the ratio a is the limit of the sequence of sets

{Cf'}, which decreases monotonically:

Co C C aI D_ Ca D

The limit is defined as the intersection of the sets {Ca}

ca = c a,-. (2.5)
1E{0,1,2,..'00

For a given I > 1, we will define the l-th approximation to the Cantor set (asso-

ciated with the ratio a) as a set

A, = { the centers of all boxes in Cf }. (2.6)

We will refer to the 4' boxes COf generated during the I - th step of the above

process as level 1 boxes. Thus, there is one box on level 0, and it coincides with the

unite square. The level I + 1 is obtained from the level I by subdividing each box on

the level I into 4 corner boxes (see Figure 2.2).

We will also impose a tree structure on the hierarchical structure of Ca, so that if

ibox is a fixed box at level 1, the four boxes at level I + I obtained by subdivision of

ibox are considered its children, while the four child boxes are considered neighbors.

2.2 The Laplace Equation

Let Ca denote the Cantor set associated with the given ratio a (see Figure 2.4). We

will consider the following exterior Dirichlet problem for the Laplace equation

Au = 0 for xER'\C', (2.7)

ulca = f.
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To insure the uniqueness of the solution of problem (2.7), the far-field condition

lim u(x) - rlnraU(x) =0 (2.8)

is normally imposed. In the above formula, r2 = (x - x0)2 + (y - yo) 2 with point

x = (x,y) E R 2\Ca and an arbitrary fixed point x0 = (x0, yo) E Ca.

Remark 2.1 As is well-known, for any harmonic function u : R2 -* R1 , there exists

two functions, ýp and 0b, 00

(r,0) Z kr 1 e,
k=-oo

VI(r,O) = Z 3krlkleikO +-yInr,
k=-coo

such that u = o + V.

The far-field condition (2.8) excludes the constant term in the expansion of t5

while allowing the logarithm term.

The proof of the following theorem can be found, for example, in [55].

Theorem 2.1 The boundary value problem (2.7) with the far-field condition (2.8) is

a well-posed problem.

As is well-known (see [15], for example), the boundary value problem (2.7) with

the far-field condition (2.8) can be formulated as an integral equation of the first kind

by representing the solution as the logarithmic potential of the charge distribution on

the boundary Ca. The charge distribution is a Borel measure on the Cantor set C'

(see [15]). Denoting by a the charge distribution over the boundary C', we obtain

the integral equation

Icln Ix - t dda(t) = f(x) (2.9)

with x E C', where the integration is in the sense of Borel measure.

Remark 2.2 As is well-known, the Lebesgue measure of a Cantor set C' is zero.

However, the equation (2.9) is mathematically sound due to the fact that any Cantor

set Ca possesses a positive capacity (for detail, see [15] or [55])
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For a given integer L > 1, suppose that N = 4L, and AL = {zi I i = 1,2,... N}

is the L-th approximation to the Cantor set Ca. Then, by the definition of Borel

integration, the integral equation (2.9) is discretized as a linear system of equations

Aa = b with A E RNxN and b E RN, (2.10)

where

Aij =logIzi-zj I forzi':j, and Aij =I.loga+6 for i=j. (2.11)

In formula (2.11), 5 is a constant dependent on the ratio a and the total number of

levels L in the approximation of Cantor set C'. The actual choice of the constant 6

will be discussed in Chapter 7.

Given a measure p over Ca, we define an integral operator P, : R2 --+ R1 by the

formula

P1(x) = Jca In Ix - tldy(t). (2.12)

Lemma 2.1 can very easily verified; and it states that with any non-negative

measure y over C', the function PM,(x) is negative for x E Ca. Theorem 2.2 is the

immediate consequence of Lemma 2.1.

Lemma 2.1 If p is a non-negative measure over Ca, then

Pu(x) < 0 for x E C'. (2.13)

Theorem 2.2 There exists an integer No such that for any integral N > No, the

coefficient matrix A in (2.10) is negative definite.

Remark 2.3 Experiments show that the integer No in Theorem 2.2 can be as small

as No = 64 (see Chapter 7).



Chapter 3

Mathematical and Numerical

Preliminaries

In this chapter, we summarize certain well-known mathematical and numerical facts

to be used in the rest of this thesis. They can be found, for example, in [10], [13],

and t55).

3.1 Potential Theory for the Laplace Equation

3.1.1 Green's Function

Definition 3.1 (Green's function in R2) Suppose that Q2 C R2 is an open con-

nected set, then for P E Q, function G(z, P) : -+ R' will be referred to as the

Green's function of 0 with pole (or singularity) at P if it satisfies the following three

conditions.

1. G(z, P) is harmonic in 9, except at the point P.

2. If P # oc, then

g(z) = G(z,P) - log Iz - P1 (3.1)

is harmonic in a neighborhood of P.

10
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If P = oc, then

g(z) = G(z, oc) - log IzI (3.2)

is harmonic in a neighborhood of oo.

3. As z tends to any point on the boundary of Q, then

G(z,P) --+ 0. (3.3)

Theorem 3.1 (Existence of Green's Function in R 2) Suppose that Q C R 2 be a

domain bounded by a Jordan curve F. Then the Green's function G(z, P) for Q exists

for any P E Q.

Lemma 3.1 (Green's Formula) Let - [0, L] --* R 2 be a closed Jordan curve,

with image of -y denoted by F. Suppose that Q C R2 is the interior of F, so that

F = 6-Q. Suppose further that Nt : [0, L] -+ R 2 is the interior normal to F, function

G: Q x Q -- R 1 is the Green's function for Q, and y E L2(F). Then the function

u :: Q R defined by the formula

u(x) = I•- j so(7(t))"- a G(x'(t)) dt (3.4)

is harmonic, and uir = p.

3.1.2 Boundary Value Problems for the Laplace Equation

Suppose that F C R2 is a Jordan curve, parameterized by its length - [0, L] --* R

and 1) is the region bounded by F, so that ag = F. Suppose further that N [0, L]

R 2 is the interior normal to P. For an integrable function f : [0, L] -- R1, we will be

solving one of the following problems.

(A) Interior Dirichlet problem

A4D(x) = 0 for xEQ (3.5)

4(x) = f(<-1(x)) for x E F
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(B) Exterior Neumann problem

AI(x) = 0 for x E R 2\Q (3.6)

o-•'T(x) = f(-Y 1(x)) for x E F

with Ik' satisfying the far-field condition (2.8).

As is well known, each of the above two problems has a unique solution for any

continuous right hand side f and piecewise smooth boundary F (see, for example,

[13]).

3.1.3 Single and Double Layer Potentials

Suppose that a point charge of unit intensity is located at the point xo G R2 . Then,

for any x E R 2 with x • xo, the potential due to this charge is described by the

expression

6..(x) = -ln(lIx - xo11). (3.7)

The potential of a dipole of unit intensity located at xo and oriented at the direc-

tion h E R2 (lIhII = 1) is described by the formula

OX0,h(X) = h(x- xo) (3.8)

lix - x011 2

For an integrable function p : [0, L] -+ R 1 , the potential of a single layer with

density y is given by the formula

T (z) = ¢0O,(t)(x)p(t)dt, (3.9)

and the potential of a double layer with the dipole density p is given by the formula
L

4(X) = 4o ¢(t),N(t)(X)I,(t)dt. (3.10)

3.1.4 Integral Equations of the Classical Potential Theory

In the classical potential theory, the interior Dirichlet problem (3.5) is solved by

representing 4 as the potential of a double layer, and the exterior Neumann problem
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(3.6) is solved by representing kk as the potential of a single layer. The analysis of

the single layer and double layer potentials in the vicinity of the boundaries results

in two integral equations of the second kind.

(Al) Interior Dirichlet Problem

irogrt-------t log II•y(x) - -t(t)Iji(t)dt = f(x). (3.11)

(B1) Exterior Neumann Problem

- Ar(W) + 9 log ff-y(x) - -y(t)j11(t)dt = f(x). (3.12)
aN(x) Jo

3.2 Galerkin Method for the Solution of Integral

Equations

As is well-known, the classical Galerkin method can be used for the numerical solution

of the integral equations of the form

,6

;I ) + fa K(x,t)y(t)dt = f(x). (3.13)

The following is the brief description of the Galerkin method.

Suppose that {Pi(x),P2(x),. . . ,PFn(x),. .} is the orthonormal basis in L2 [a,b].

Then the function n, : [0, L] -- R' defined by the formula

n

,n = W _E aPj(x), (3.14)
j=l

and satisfying the condition

(r, An) = 0, (3.15)

will be used to approximate the solution of the integral equations (3.13). The error

function r(x) in formula (3.15) is defined via the expression

r(x) = Pn,,(x) + j K(x,i) ,,(t)dt - f(x). (3.16)
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The above procedure results in a linear system Bx = b defined by formulae

Bij = J I K(x,t)Pi(t)Pj(t)dxdt i j (3.17)

for 1 < i,j •< n, and Bi, 1,

b = f(x)P:(x)dx, (3.18)

for 1 <i <n.

A detailed discussion of the Galerkin method for the solution of the equations of

the classical potential theory can be found, for example, in [61, [10], [14], [20], [24],

[32], [52], [53], and [611.



Chapter 4

Fields of Charges

In this chapter, we investigate in some detail the structure of potential fields in R2 ,

and prove Theorem 4.2, which is the principal analytical tool of this thesis.

It is well known that the potential 4x 0 due to a point charge at xo E R2 (defined

by formula (3.7)) is harmonic in any region excluding the source point x0 . Moreover,

for any harmonic function u : R' --* R', there exists an analytic function w :X -- 4C
such that u(x, y) = Re(w(x, y)). In the rest of this thesis, we will make no distinction

between points in R' and points inC. In complex terms, the potentials Cxo and 6xojh

defined by the expressions (3.7) and (3.8) respectively, assume the form

(Z) = Re(- In(z- z)),

and
¢0.-,(z) = Re( hA

Z - Z0

where z = x + iy and zo = xo + iyo. Following the standard practice, we will refer to

the analytic function ln(z - z0 ) as the potential at the point z EC due to a charge

located at the point z0.

15
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4.1 Ranks of Interaction Matrices

The following lemma can be easily proved by expanding ln(1 - "') into Taylor series

with respect to w.

Lemma 4.1 Let a unit point charge be located at zo. Then for any z such that

IzI > Izol,

p2 o(z) = ln(z - zo) = aoln(z) + 0Z ak (4.1)
k=1

where

k
ao = 1 and ak =_z (4.2)

Furthermore, for any p> 1.

6,cz)0 a In( z) - p(1 1P, (4.3)
k=1

where

(4.4)

Remark 4.1 The above lemma can be reformulated in a slightly different way, which

will be used later.

Truncating the expansion (4.1) after p terms (p > 1), we will denote the error of

the truncated expansion by sP&(z), so that
p a

Ep0z= ( Z o(z) - aoln(z) - Z -.

k=1

Then for any p > 1,

6-.(z) = &:o(z) + uTvf (4.5)

with the vectors up and vp defined by the formulae

1 1 1
UP (In z, , I ..... -(4.6)

Vp - 10o -. ). (4.7)

'1 '2 p
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Furthermore,

-1 (4.8)
1 c C

with c defined by (4.4).

Clearly, the truncation error E,0 (z) in (4.8) decays exponentially as the function

of p. Thus few terms in (4.1) are needed to achieve any given accuracy,

The following theorem is the principal analytical tool of this thesis. It states that

under certain conditions, the rank of the matrix describing the potential interaction

between two sets in R 2 is finite to any given precision.

We define the interaction matrix between the two sets of points {xi, X.r} and

{yi,",y,} as a m x n matrix

oy,(x,) oy(Xl) ... 61;,(X,)

= ¢Y(x2) y(X2) .- .. .(x2) (49)

ln(xi - yi) ln(x1 - Y2) ... ln(xi - yn)

ln(x 2 - YI) ln(x 2 - Y2) ... ln(x 2 - y,) (4.10)

ln(x - yj) ln(xm-Y 2 ) .. ln(x - y,))

The following theorem follows immediately from formulae (4.5 ) and (4.8).

Theorem 4.1 Let n unit point charges be located within the circle jyj < R at points

{Y1,Y2,, ..yn}, A > 0 be some real number, and {XI,X 2 - ,-x,} be another set of

points such that 1x4j > (1 + A)R for all 1 < I < rn (see Figure 4.1). Then the
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Yn 0 Y2.

Figure 4.1: Points {xi} outside the circle with radius (1 + A)R

interaction matrix of the two sets {ýxj and {yj) has the decomposition

In X 1 1 .. 1X1  • .. ~ I22 .

lnx _I .....
)) l X2 XT -1 Y 12[ :21 Y;' + EP. (4. 11)

1 (xi = . . .. 2 2 2

2n 2~ 2M, PY

nm a A... ...

p p p

where the truncation error EP = (•,(xi)) is bounded by the expression

S( i' _ 1 1 PK (x) •)- (4.12)

for 1 <i <m and 1 <_j <n.

Inequality (4.12) means that every element of the matrix of truncation error EP

decays exponentially as the function of p. Thus for any given accuracy. the interaction

matrix of the two sets {xj} and {yJ} can be decomposed into the product of two

matrices of low rank ( < (p + 1)).
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Figure 4.2: Well-separated sets in the plane

For two sets of points. {xix2,' .x,} EC and {YIyY2",Y,} EC. we say that

the two sets are well-separated (see Figure 4.2) if there exist points xo, yo E C. and

R > 0 such that

Ix,-x0a < R for 1 <i<m,

1y -yol <R for l_<j_<n.

40 - Y01 > 3R.

Theorem 4.1 implies that with any prescribed precision, the interaction matrix

of two well-separated sets can be decomposed uwi, a nrodi-t of two matrices of low

rank. the rank depending only on the separation of the two sets (A > 1). (see formula

(4.12)).

4.2 Interactions in Cantor Sets

In this section. we consider electrostatic interactions within a Cantor set C'. For any

given ratio a. the interactions in the Cantor set Ca are of low rank. The interaction

ranks depend only on the ratio a for generating the Cantor set.

The following lemma is obvious, and will be used in the proof of Theorem 4.2.

Lemma 4.2 Suppose that D1 and D2 are two subsets of Cantor set C' with ratio a,

set A is a child box of Di. and B is a child box of D2 (see Figure 4.3). Then the rank
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A B

Figure 4.3: Two Subsets of C" and Their Child Boxes

of the interaction matrix between subsets D, and D2 at most four times as large as

that between boxes A and B.

Theorem 4.2 For a given real number a ( 0 < a < ½ ), and an integer I > 1,

suppose that C' ;s the Cantor set associated with the ratio a, and Cj' is set of

boxes generated at the l-th level

Ca = {Dl, D2,.'--,D4}. (4.13)

Then for any given precision, the rank of the interaction matrix between any two boxes

Di and Dj depends only the ratio a for generating the Cantor set Ca, and does not

depend on the sizes of boxes and the numbers of points inside the boxes.

In other words, the matrix of interactions between any two boxes at any level of

Cantor set Ca is of fixed rank, to any prescribed precision.

Proof: Because of the self-similarity of the Cantor set Ca, it is sufficient to estimate

the rank of interactions between any two boxes of Cl with I = 1,

C= {D 1, D2 , D3, D 4 }.

Suppose that D1 and D 2 are not well-separated. Then we divide each of them into

four squares of the same size (see Figurc 4.4). Let A be a square from the subdivision

of D1 , and B be a square from the subdivision of D2 .
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A B

Figure 4.4: Subdivisions of Two Sets

If squares A and B are well-separated, then the rank of interaction between D1

and D2 is no greater than 4p, where p is the interaction rank between A and B.

If A and B are not well-separated, then we keep dividing each region into four

squares till the pieces are well-separated.

Due to Lemma 4.2 and Theorem 4.1, the rank of the interaction matrix between

any two boxes at any level of the Cantor set is bounded by

p.4k with k= ln(1 - 2a)/(v/2- - 1) (4.14)
In a I

where p is the rank of the interaction matrix between two well-separated boxes. U

Remark 4.2 Clearly, the estimate (4.14) is an extremely pessimistic one. In the

following chapter, we obtain much sharper numerical estimates (see section 5.3).



Chapter 5

Scattering Theory for the Laplace

Equation

In this chapter, we borrow terminology from the standard scattering theory of wave

equations for the design of fast algorithms, and refer to the result as scattering theory

for the Laplace equation.

To develop the scattering theory for the Laplace equation, we first introduce the

concept of scattering matrix, and then present the merging scheme for generating

scattering matrices recursively.

Throughout this section, r will denote a Jordan curve, parameterized by its length

y: [0, L] --+ R2 . The region bounded by 1 will be denoted by 1, and D will denote a

compact subset of Q. In addition, G: Q x -+ R1 will denote the Green's function for

domain Q, and N : [0, L] --+ R' will denote the interior normal to F. For a compact

set E C R2 , M(E) will denote the set of all non-negative Borel measures on E.

5.1 Scattering Matrices

Any function 4I : U -+ R harmonic inside Q and continuous on - will be referred to

as incoming potential. As is well-known, for any continuous function c . I R,

22
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D F

Figure 5.1: Compact set D in domain Q with boundary F

there exists a unique function 4D : f -+ R harmonic on Q, and continuous on ?i such

that -fr = cp. Therefore, we will abuse the notation by referring to the function

S:F :- R as the incoming potential.

Suppose that q E L2 (Q) and o, is a Borel measure over D. Given a function

K E L 2(R 2 x R2 ), the function

%D (x) = g(x,t)q(t)do(t) for x E R2\D (5.1)

will be referred to as outgoing potential. Similarly, we will call its restriction

S= 'glr onto F an outgoing potential. Outside the domain N, function TI will also

be referred to as scattering potential.

Remark 5.1 Particularly, we are ,nterested in the case when K(x,t) = In I I- tI1,

and q(t) is the characteristic function of D. Then the outgoing potential

TX = fD In jjx - tlldo,(t) (5-2)
in '(x) Jd (5.

zs a function harmonic in R 2\D, and satisfying the far field condition (2.8).
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We define three operators

L: L2 (T) -* L2(D),

P M M(D) --- L2(R2\D),

S: M(D) -+

via the formulae

L(p)(x) = o(--(t)).- G(x,-y(t)) .dL (5.3)

P(o)(x) = J K(x, t)q(t)da(t) for x E R 2\D, (5.4)

S(a)(x) = J K(x, t)q(t)do(t) for x E F. (5.5)

We will be considering equations of the form

P(o) = f, (5.6)

with f E L 2(D). A special case of equation (5.6) is the integral equation (2.9) defined

in section 2.2, with D a Cantor set, K(x, t) = In IIx - tf1, and q(t) the characteristic

function of D.

Definition 5.1 The operator a: L 2 (r) --+ L 2 (F) defined by the expression

S= S- P 1 - L (5.7)

will be referred to as scattering matrix.

Remark 5.2 Given an incoming potential 'p on the boundary F, the operation of a

on ýp can be viewed as consisting of three steps:

1. The operator L constructs a function f = L• : R - R harmonic over the

compact set D, and such that (Lp)jr = '.
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Figure 5.2: Scattering matrix a: p --* V

2. The operator P-` constructs the solution a = P-'f of equation (5.6) from the

harmonic function f = Lgo.

The charge distribution a will be referred to as induced charge distribution.

3. The operator S defined by (5.5) constructs an outgoing potential 4 = Sa on F

from the induced charge distribution a.

The outgoing potential 4 will be referred to as induced outgoing potential.

Thus, the scattering matrix a maps an incoming potential cp to the induced out-

going potential 4
'=a. (5.8)

The following theorem, while interesting in itself, is not closely related to the

purpose of this thesis since its proof is quite involved. We refer the reader to [15] and

[55], where it can be found in a somewhat different form.

Theorem 5.1 (Compactness of Scattering Matrix a) Suppose that K(x, t) =

In Ilx - til, and q(t) is the characteristic function of D. If D n F = 0, then the

scattering matrix a in (5.7) is a compact operator.
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Figure 5.3: Disjoint compact sets {Di} in domain Q

In other words, if D is strictly inside domain Q (bounded by F), then the discretiza-

tion of f results in the finite dimensional approximation to the scattering matrix, to

any prescribed precision.

5.2 Recursive Generation of Scattering Matrices

We will consider a case when a compact subset D of domain Q is the union of mutually

disjoint compact sets {D,} (see Figure 5.3).

It turns out that the scattering matrix of D can be obtained by merging the

scattering matrices of {Di}. We begin with introducing the requisite notation. Then

we present the merging scheme for the recursive generation of scattering matrices.

5.2.1 Notation

Suppose that A = {,I, r2,--, Im} C Q is a set of closed Jordan curves. Each Fi E

is parameterized by its length -yi : [0, Li] -- R2 , and Ri C (1 is the region bounded by

F,. Suppose further that for 1 < i < m, Di is a compact subset of Qi, function G,:
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Di Q
D2

Figure 5.4: Di C Si for 1 < i < m

9i x -i R' is the Green's function for domain Qi, and function Ni: [0, L] * R2 is

the interior normal to Fi.

Assuming the domains {ti} to be mutually disjoint, we will consider the compact

subset D of domain Q defined by the formula

D-UDi.
i=1

In addition to operators L, P, and S defined by (5.3), (5.4), and (5.5) in the

preceding section, we will require the operators for 1 < i < m

L, : L2 (Fi) , L2(f2i)

Pi : M(D,) -* L 2(R 2\Di)

S,, : .M(D,) -+ L 2(F,)

defined by formulae

= •(- J (t)) •N ,(x, ,(t)).dt (5.9)
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Pi (u)(x) = J K(x,t)q(t)do(t) for x E R 2\D (5.10)
DI~i

Sii(o)(x) = JK(x,t)q(t)do.(t) for x E F,. (5.11)
DlLi

We will consider equations of the form

Pg(a) = f (5.12)

with f E L2 (Di), and 1 < i < n.

Definition 5.2 A function ýpi E L2 (Fi) will be called total incoming potential if

for any x E Di,

Pi(aID,)(x) = L1j(co 1)(x), (5.13)

where operators Pi and Li2 are defined by (5.10) and (5.9) respectively, and OID, is

the restriction of the charge distribution a (defined by (5.4)) to the compact subset

DicD.

Suppose that for any i (1 < i < in), function ýo, is the total incoming potential

on Fi, function Oi is the outgoing potential induced by pi, and operator ai is the

scattering matrix for the domain Di. Then

a, = SUiPj-'Lii, (5.14)

0, = -i (5.15)

(see (5.9), (5.10), (5.11), (5.7), and (5.8)).

We will also require operators

L 2 2(r) -*L2(),

S,: L2 (F,) - L2(F),

L3 : L2(F,) -- L2(F), i ,
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defined for 1 < i, j < m via formulae

)x = q(7(t))"-G(x,-y(t)) dt for x E ri, (5.16)
27r Joa~

J 0 K(x, t)q(t)do,(t) for x E F, (5.17)

Ljifi K(x, t)q(t)dc(t) for x e F3 . (5.18)

In other words, the operator Si converts the outgoing potential 0j on Fi into the

scattering potential on F, and the operator Lji converts the outgoing potential Wi on

Fi into the scattering potential on F,.

Definition 5.3 The operar, r

LS2 (1,)

Sp : L 2(r)- L 2(17)

defined by the formula

-1
I -L12Cf2 .. .Limam L,

SP -L 2 1  I -L 2 mam L J (5.19)

-Lmial -Lm2Q2 I

will be referred to as splitting matrix, provided the inverse in (5.19) exists.

5.2.2 Merging Scheme for Scattering Matrices

Lemma 5.1 is used in the construction of the merging scheme for scattering matrices.

and Theorem .5.2 gives the full description of the scheme.
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Lemma 5.1 Suppose that p is an incoming potential on the boundary F, and (Pi is

the total incoming potential on Fj in the sense of (5.13). If the inverse in (5.19)

exists, then

Y. 2 S . .(5.20)

In other words, the splitting matrix maps the incoming potential V on F to the total

incoming potentials {fi} on boundaries {F }.

Proof: For any i (1 < i < in), the total incoming potential pi on the boundary F2

equals to the sum of the potential from F and the scattering potentials from {frj}

with j 1 i and 1 •< < m. That is,

•i = Lie + Z LijVj. (5.21)

Combining (5.15) with (5.21), we have

vi = Lj~o + E Ljjajcoj. (5.22)
3•i

Viewing the above equations as a rn x m linear system, we obtain (5.20). U

Theorem 5.2 (Recursive Generation of Scattering Matrices) Given scatter-

ing matrices {fai for domains {Di}, the scattering matrix a of domain D is given by

the formula
a= Sl 2al $2a 2 "" Sm fm)Sp, (5.23)

where operators {Si} are defined by (5.17), and the splitting matrix S, is defined by

(5.19).

Proof: Suppose that v is an incoming potential on F, and a is the charge distribution

induced by ;. Then by definition (see equation (5.1)), the induced outgoing potential
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assumes the form

¢(X)= J K(x, t) q(t) da(t)

- ID K(x, t) q(t) da(t) (5.24)

for anyxE F.

By definition of the operator Si in (5.17),

Sivi = J K(x, t)q(t)dt, (5.2-5)

so that equation (5.24) assumes the form

W= (S,- Vi)(x). (5.26)

Therefore,

(S1aI S 22 2  Smnm) 0 2. (5.27)

Now, the conclusion of the theorem follows from the combination of (5.27), (5.7),

and Lemma 5.1. M
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F
D

Figure 5.5: A subset D of Cantor set Ca in domain Q

5.3 Scattering Matrices in Cantor Sets

Suppose that D is a compact subset of Cantor set C', and the set D is enclosed in a

domain Q with its boundary denoted by IF (see Figure 5.5). The boundary F will be

referred to as frame boundary.

To specifically deal with the problem defined in section 2.2, we consider scattering

matrices in Cantor sets, with K(x,t) = lnflx - tfl and q(t) as the characteristic

function of D. Then an incoming potential (D is harmonic in Q, and an outgoing

potential q, is harmonic in R2 \D, and satisfying the far-field condition (2.8) (see

Remark 5.1).

The operators P : L 2(D) -, L2(R 2\D) defined by formula (5.4), and S : L2 (D)

L 2 (F) defined by formula (5.5) assume the form

P(Or)(x) = In Hjx - tIIda(t), (5.2S)

S(a)(x) = J jlnx - tda(t). (5.29)fD
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In this section, we construct an analytical apparatus for representing scattering

matrices corresponding to subsets of Cantor sets. First, we discuss the representations

of incoming and outgoing potentials in terms of single and double layer distributions.

5.3.1 Representation of Potentials

Lemma .5.2 below is an obvious statement about the representations of incoming and

outgoing potentials in terms of the solutions of classical boundary value problems for

the Laplace equation, and Lemma 5.3 is a statement about the representations of

incoming and outgoing potentials in terms of the solutions of integral equations in

the potential theory (see section 3.1). Theorem 5.3 is an immediate consequence of

Lemma .5.3. and Theorem 5.4 follows immediately from Lemma 3.1 and Theorem 5.3.

Lemma 5.2 Suppose that ý; is an incoming potential on the boundary F, and t0 is

an outgoing potential on F. Then the incoming and outgoing potentials 4 and 'I are

respectively the solutions of the following two boundary value problems.

(AA4) Interior Dirichiet problem (Incoming Potential)

AD(x) = 0 for x E (5.30)

"N() = (-•-'(X)) for x E F

(BB) Exterior NVeumann problem(Outgoing Potential)

A ( W= 0 for x E R2 \f2 (531)

oD(x) - i*C'(X)) for x E F

with T satisfying the far-field condition (2.8).

Lemma 5.3 Suppose that ,o is an incoming potential on the boundary F, and ¢i' is an

outgoing potential on F. Suppose further that a dipole distribution Pd and a charge

distribution p, are respectively the solutions of the two integral equations,

""d(x) + ,V(t) log 11,(X) - ^f(t)I 1ud(t)dt = p(x) (5.32)
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- irt'-(x) + dN(x--J- llog I'(X) - -y(t) I zs(t)dt = O(x). (5.33)

Then the incoming and outgoing potentials can be represented by the formulae

~(x() = j N(t) log Ia' (x) - -Y(t)Ijjd(t)dt, (5.34)

T() = J log I (x) - -(t)I As(t)dt. (5.35)

To formulate the above theorem in the operator notation, we define four operators

Qd: L'(r) -- L*(Q),

Q,: L2 (r) -- L 2 (R 2\!Q),

Pd: L2 (r) -L(r),

P,: L2(r) -L 2(r),

via formulae

Qd(Od)(X) 109 log I-(X) - 7(t) I ld(t)dt, (5.36)

IL
= log I- (x) - -y(t)Ipi(t)dt, (5.37)

Pd(Pd)(X) = 7rid(X) + a 1, l(t)Id(t)dt, (5.38)0 ON-(t)lol'()'~~latd, (.8

Pý(,)(X) = -7r/lp(x) + ON()I1L log 1I_(X) - y(t)IIy.(t)dt. (5.39)

Theorem 5.3 Suppose that W is an incoming potential on the boundary F, and b

is an outgoing potential on r. Then the incoming and outgoing potentials can be

represented via the formulae

4ý = QdP'ýP, (5.40)

'D = QP--•0, (5.41)

where operators Q•, Qd, P, and Pd are defined by (5.37), (5.36), (5.39), and (5.38)

respectively.
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Theorem 5.4 Suppose that L : L2 (F) -- L 2(D) is the operator defined by the formula

(5.3). Then

LV = (QdPi' •)ID, (5.42)

with the operators Qd and Pd defined by the formulae (5.36) and (5.38) respectively.

Remark 5.4 Under certain circumstances, we will be generating scattering matrices

directly by using their definition (see (5.7))

a = SP-1 L, (5.43)

where operators P, S, and L are defined by formulae (5.28), (5.29), and (5.42) re-

spectively.

5.3.2 Recursive Generation Of Scattering Matrices

Suppose that {D 1,D 2 ,D 3, D4 } C Ca are four subsets (boxes) resulting from the

subdivision of a bigger subset (box), and the set D is the union the four subsets {Di}

4

D =U D. (5.44)
i=1

Suppose further that D is enclosed in s square Q with its boundary denoted by F.

The square Ql will be referred to as frame domain (box) while F is referred to as frame

boundary.

Suppose that for any integer i (1 < i < m), the set Di is enclosed in a square Qj
with its boundary denoted by Fi (see Figure 5.6). Within the tree structure of the

Cantor set Ca (see section 2.1), we will refer the frame boxes of neighbor boxes as
frame neighbor boxes, and the frame box of a parent box as parent frame box.

In this section, we obtain the scattering matrix a for D from scattering matrices

{aI, a 2, a3, a 4} for domains {D 1, D 2, D3 , D4 }. First, we need the representations of

operators

Li: L2 (r) -, L2(],),
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--------- ----I------ -

LiI

a-----------a----------- ---------- a

a --------------- a----------------------a

aa j a a'r L W2r)

Thoem . an a. blwflofrmTeem53i edatey em .

isthimm Figure 5.6:qunc Four Subetsa of.C, and Theirorame B. shoxeseuneo

oeaosLSadL defined by formulae (5.16), (5.17), and (5.18). respectively

5.7 describes the merging scheme for the recursive generation of scattering matrices

for subsets of Cantor sets.

Theorem 5.5 Suppose that Li : L 2 (F1) --4 L2 (171 ) is the operator defined via formula

(5.16). Then

Ljpp (QdPj'P)jr, (5.45)

with operators Qd and Pd defined by formulae (5.36) and (5.38) respectively.
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Similar to operators Q, defined by formula (5.37) and Ps defined by formula (5.39)

for domain 9, we define operators on domain Qi for 1 < i < 4,

Q$'i : L 2(r,) -, L 2(R 2\Qi),

P,: L2(L'r,) -- L2(r),

by formulae

Q,(o(x) = j log ll-y 2(x) - -y7(t)jjcr8(t)dt, (5.46)

=-7roa.(x) + ( j log I-y1i(X) - _yi(t)ja 3,(t)dt. (5.47)P,,,a,)z) =-Tr,(x)+ aN,(x----) 0

Theorem 5.6 Suppose that operator

Si: L 2 (r) -+ n2(r),

is defined via formula (5.17), and operator

L1, : L2 (F) - L2(,r) for i 5 j,

is defined via formula (5.18). Then

Siv = (Q,,P87l¢))r, (5.48)

Lij= (Q3,iPT,)Ir, (5.49)

with operators Q,,i and P,,j defined by formulae (5.46) and (5.47) respectively.

Remark 5.4 The splittering matrix

LS2(F1)

Sp ": L 2(f) -- L2(172)

L2( F3)
L 2(r4)



CHAPTER 5. SCATTERING THEORY FOR THE LAPLACE EQUATION 38

is given by the expression (see formula (5.19))

-1
I -L12a2 -L 13a 3 -L 14a4 L,

Sp= -L 21 l I -L 23a 3 -L 24a 4  L 2  (5.50)
-L 31 a1  -L 3 2a 2  I -L 24a4 L3
-L410al -L42Ce2 -L430t3 I L4

with Li defined by (5.45) for 1 < i < 4, and Lij defined by (5.49) for 1 < i,j < 4.

Lemma 5.4 Suppose that ýp is an incoming potential on the boundary F, and for

1 < i < 4, ,pi is the total incoming potential on Fi in the sense of (5.13). Then

=2 = S., (5.51)
Va3

ý04

with the splitting matrix Sp defined by formula (5.50).

In other words, the splitting matrix maps the incoming potential ý0 on F to the

total incoming potentials {•i} on boundaries {Fi}.

Theorem 5.7 Suppose that for 1 < i < 4, the scattering matrix for the compact set

Di is denoted by ai. Then the scattering matrix a for the set D = U4 1 Di is given

by the merging formula

= ( Slal S 2 a 2 S 3 a 3 S 4 a 4 ) Sp, (5.52)

with operator Si defined by formula (5.48) for 1 < i < 4, and the splitting matrix SP

defined by formula (5.50).

Remark 5.5 Due to the self-similarity in Cantor sets (see section 2.1), we only need

to compute one scattering matrix per level.



CHAPTER 5. SCATTERING THEORY FOR THE LAPLACE EQUATION 39

-------------- -.

I

F-1 I II 1

I

Figre5.: Fram Boxe foFano -StC

* I:

------------- ----- I--- -------- I

-------- ---------- I-------------I

5.3.3 Discretization of Scattering Matrices

From the preceding sections, it is clear that the construction of scattering matrices for

subsets of Cantor sets, either directly or recursively, depends on the choice of frame

boundaries (or frame boxes) (see Remark 5.4 and Theorem 5.7). For a Cantor set

Ca, we recursively generate frame boxes for subsets of Ca such that frame boxes at

the same level are mutually disjoint, and the distance between a box and its frame

box equals to the distance between two neighbor frame boxes (see Figure 5.7).

With the above choice of frame boxes, we first represent incoming and outgoing

potentials 1ý and T numerically in the forms described in Theorem 5.31, in order to

discretize scattering matrices for subsets of Cantor sets.

Lemma 5.5 below introduces a set of orthogonal polynomials, and Lemmas 5.6
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and 5.59 describe the two-dimensional integrations involved in the application of the

Galerkin method to the numerical representation of incoming and outgoing potentials

(see sections 3.2 and 5.3.1).

Lemma 5.5 Suppose that {Pi(x), P2(x),. .,P,(x),...} is a set of polynomials de-

fined by the formulae

n! d"

P ,,(x - (2n)! , (x2 - 1 )n, n = 0, 1,2, (5.53)

Then

J P,(x)Pi(x)dx = 0 for i _ j. (5.54)

The orthogonal polynomials defined above are the well-known Legendre poly-

nomials. The roots of P,(x) will be referred to as the Legendre nodes. We will

use the Legendre polynomials in the Galerkin method as the basis functions to rep-

resent incoming and outgoing potentials numerically in terms of the representations

described in Theorem 5.3.

Lemma 5.6 Suppose that Q is a square of size two with its boundary denoted by F,

and {Pi(x),P2 (x),-.. ,Pn(x)," .} are the Legendre orthogonal polynomials defined in

Lemma 5.5. Suppose further that ps is either the solution of equation (5.32) or of

equation (5.33), and the solution ui is approximated by the truncated expansion on

each side of the square Q:
n

Pn(X)= E] Z iPi(x), (5.55)
i=O

for each of the two horizontal sides of Q, and
n

A,(Y) = _ rjP 2i(Y), (5.56)
i=0

for each of the two vertical sides of Q. Then there are only two types of integrations

involved in the matrices of the type defined by formula (3.17) in the Galerkin method

described in section 3.2. The two integrations are of the form

=(( + + +') P()g(x)dxdy, (5.57)
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for any two adjacent sides of domain 9, and

f= =1 1 (x - y)2 + 4 Pi(x)Pj(x)dxdy, (5.58)

for non-adjacent sides of domain Q, where 1 < i,J < n.

The following lemma is obtained immediately by writing down the integral Iij

(defined by (5.57)) in polar coordinates.

Lemma 5.7 Suppose that for 1 < i,j < n, integration I~i is defined by (5.57). Then

•r 2 2

= I ]sa+ Pi (rco}P( 0o - 1)JP(rsin0 - 1)sinOdrdO. (5.59)

Remark 5.6 Integrations Ii. defined by formula (5.59) and Jij defined by formula

(5.58) for 1 < i,J < n, are now integrals of smooth functions. They can be computed

by the Gaussian quadrature rule based on Legendre nodes (see. for example, [50]).

Thus, operators Pd and P8, can be represented numerically by the formulae (5.38) and

(5.39) respectively.

On the other hand, with the approximated solution An (defined by (5.55) and

(5.56)) to y the solution of either equation (5.32) or (5.33), operators Qd and Q,

defined by formulae (5.36) and (5.37) can be represented numerically by using the

Gaussian quadrature rule.

Therefore, incoming and outgoing potentials 4 and V are represented numerically

by formulae (5.40) and (5.41) respectively.

Based on the above choice of frame boxes, Tables 5.1 and 5.2 list the number of

Legendre nodes needed on frame boundaries for the representation of incoming and

outgoing potentials to single and double precision respectively.
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S= 10-' (Absolute Error)

Ratio a 0.1 0.2 0.3 0.35 0.4 0.45
Number of Nodes

Per Side 12 18 30 46 66 100 I

Table 5.1: Number of Legendre Nodes for Single Precision

S= 10-14 (Absolute Error)
Ratio a 0.1 0.2 0.3 0.35 0.4 0.45

Number of Nodes
Per Side 30 44 60 80 120 200

Table 5.2: Number of Legendre Nodes for Double Precision

Remark 5.7 Two observations can be easily made from the above two tables.

1. The number of Legendre nodes needed to obtain double precision is only twice

the number of nodes needed for single precision.

2. The number of nodes needed increases rapidly with the increase in ratio a.

With the frame boundaries described above, we are ready to discretize scattering

matrices for subsets of Cantor sets.

Suppose the the set of points {z 1 , z2,..., zm} is the approximation to the compact

set D C Q, and the set of points {X1 ,x 2,'.',x,} are the Legendre nodes on the

boundary F.

The operator P defined by formula (5.28) is discretized in a manner similar to

that of the integral equation (2.9). In other words, the discretization of P is a matrix

P5 defined by the formulae

(P)i = lnI fzi - zjII for i # j and 1 < i,j <m, (5.60)

(/P)i; = I -loga + 5 for I <i<m, (5.61)
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where 6 is a contant (see (2.11)).

Similarly, the operator S defined by (5.29) is discretized as a matrix S defined by

the formulae

(S),j =ln[x2-zIj for 1 <i<p and 1 <j <in. (5.62)

The operator Qd defined by (5.36) and the operator Qs,, defined by (5.46), are

discretized by the Gaussian quadrature rule based on Legendre nodes. The operator

Pd defined by (5.38) and the operator P8,2 defined by (5.47) are discretized by the

Galerkin method described in section 3.2.

Remark 5.8 Given a discretization of operators P, S, Pd, Qd, Q,,i and P,,i (defined

by the formulae (5.28), (5.29), (5.38), (5.36), (5.46) and (5.47) respectively), all the

other operators L, Li, Si, Lij and Sp for 1 < i,j < 4, are represented numerically

by the formulae (5.42), (5.45) , (5.48), (5.49) and (5.50). Thus, scattering matrices

can be computed either directly by using formula (5.43), or recursively by using the

merging scheme described in Theorem 5.2.



Chapter 6

The Fast Direct Algorithm

In this chapter, we describe a direct algorithm for the rapid solution of the Laplace

equation on regions with fractal boundaries. The algorithm exploits the fact that

for any given ratio a, interactions at any level in the Cantor set C' are of low rank

(the ranks depend only the constant ratio a for generating the Cantor set, and do

not depend on the sizes of boxes and number of points inside). The low rank of

interactions is reflected in the coefficient matrix in equation (2.10) as the low-rank

of its off-diagonal submatrices (see Figure 6.1). Thus, we can recursively compress

these matrices of low rank without actually generating them.

To be more specific, let us consider four subsets (boxes) in a Cantor set Ca.

depicted in Figure 6.2. They are boxes of size d, and the distance between any two of

them is (1 - 2a)d. The interactions between them are of low rank (see section 4.2),

and can be represented via scattering matrices (see section 5.3).

Starting with the hierarchical structure of a Cantor set Ca (see section 2.1), we

proceed by introducing a set of frame boxes arranged in a tree structure (see section

5.3). For a given precision E, we determine the number of Legendre nodes needed on

frame boundaries for the representation of potentials (see Tables 5.1 and 5.2). Then

we precompute the inverses of operators Pd and P, defined by formulae (5.38) and

(5.39), via the classical Galerkin method (see section 5.3. 1).

44
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Figure 6.1: Approximation of Cantor set and Coefficient Matrix

To describe the algorithm, we need the following notation.

L Number of levels in the approximation of the Cantor set Ca.

N N = 4L, the size of the approximation of the Cantor set Ca

p The number of Legendre nodes on each side of frame boundaries

for the representation of potentials to a given precision c

L, The number of a level on which a scattering matrix is computed directly.

m - 4 L-L 1 , size of linear systems to be solved directly

A, The m x m matrix A1 is the restriction of matrix A in (2.11) onto a

subset (ibox) at level L1 . In other words, (Af),j = In Ilzi - zjjj, and

(A1 )2 , = Llna+±, where points {zi,... ,Zm} C ibox, and 6 is a constant.

The fast direct algorithm is a two-pass procedure. In the first (bottom-up) pass,

we compute the scattering matrix for level L1 directly by using formula (5.43), and

scattering matrices for all coarser levels (level number < L1 ) by using the merging

scheme described in Theorem 5.7. In the second (top-down) pass, we generate total

incoming potentials on frame boundaries up to level L1 by using Lemma 5.4. Finally,

we solve 4 L, small-scale linear systems of size m x m directly at level L 1.

Following is a formal description of the algorithm.
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d

(1 - 2a)d

Figure 6.2: Four Subsets of Cantor set C'

The Algorithm

Initializaiton

Comment [Computations in the initialization are done once for all.]

Step 1

Comment [ Given a real number a (0 < a < 1) and an integer L, construct the2

approximation of Cantor set Ca, and its frame boxes]

do lev= 0. 1,2,.., L

do ibox = 1,2,..., 41e

Divide each box into four corner boxes according to the constant a.

Construct the frame box for ibox (section 5.3).

endo

endo

do let, = L

do ibox = 1,2,. .. 4L

Compute the center of ibox.

enddo

enddo
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Step 2

Comment For a given precision t. precompute operators Pd P71 and 4l-]

do

Determine nurmber of Legendre nodes p (see Tables 5.1 and 5.2)

Generate the inverses of operators Pd and P, defined in (5.38) and (5.39), via

the classical Galerkini method.

Compute the inverse of m x m matrix Af directly.

enddo

Upward Pass

Commenti Compute scattering matrices and splitting matrices]

Step 3

do leu = L,

Compute the discretized operators L and S defined by (5.42) and (5.29).

Compute the scattering matrix directly via formula (5.43): a = SA-'L.

endo

Step 4

do let, = L- 1.L, - 2...- 1.0
do =1 1.-...4

Compute operators L, and Si (defined by formulae (5.45) and (5.48))

via the Gaussian quadrature rule based on Legendre nodes.

do j = 1.-.-.4

Compute L,, defined by (5.49) via the Gaussian quadrature rule.

endo

endo

Compute the splitting matrix Sp by using formula (5.50).

Compute tho scattering matrix a via the merging scheme in Theorem 5.7.

endo
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Downward Pass

Comment [Splitting matrices are now available. Compute total incoming potentials

on all frame boundaries up to level L1 ]

Step 5

do lev = 1,2,.-.,L 1

do ibox =1,2,...,4Iev

Compute total incoming potential •, by means of Lemma 5.4.

enddo

endo

Step 6

do ibox = 1,2,.--,4L1

Solve m x m linear system directly by computing ao = A=iLcpj,

where operator L is computed at Step 3.

endo

Remark 6.1 Suppose that ibox is a fixed box at leve6 1. Then in the splitting pro-

cess, the total incoming potential on the the frame boundary of ibox can be computed

independently from those on the other frame boundaries of boxes at the same level.

Thus, we can obtain a part of the solution independently from the rest of the

solution if only a part of the solution is desired.

A brief analysis of the algorithmic complexity is given below.
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Step Number Operation Count Explanation

1 o(N) 4N boxes (squares) are involved. Each

box is determined by its center and size.

2 O(m3 + p3) Operators Pd and P, are of size 4p x 4p,

and the Operator Af is of size m x m.

3 O(mp + m2p) Operator L is of size m x 4p.

Operator S is of size 4p x m.

Operator AJ1 is of size m x m.

4 O(p 3 log N) Operator Li, Si, and Lij is of size 4p x 4p.

Sp is of size 16p x 4p. Operator a is of

size 4p x 4p. There are log N levels.

5 0(p 3 N) The computation of the total incoming

potential Vi on each frame boundary

requires p' operations. There are 4L,+1

(< N) frame boundaries involved.

6 O(m 2pN) Operator AJ1 is of size m x m. Operator

L is of size m x 4p. Potential Vi is a

vector of size 4p. Computations of A- IL~i

are done 4 L1 (< N) times.
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The time complexity of the algorithm is therefore

(01p 3 + / 2Mr2p) - N + #3p3. log N, (6.1)

where the constant m is normally chosen to be m - 256, and the constant p depends

on the geometry of a given fractal boundary, and the choice of frame boundaries (see

Tables 5.1 and 5.2), and the constants 01, 02, and 03 depend on the computer system,

implementation, language, etc.

Remark 6.2 Given scattering matrices and total incoming potentials, the evaluation

of the potential

T (x) = fJo In IIx - tIldo(t) (6.2)

at any point x E R2 \Ca requires at most O(log N) operations, where oa is the charge

distribution over Ca.



Chapter 7

Numerical Experiments

We have implemented the fast direct algorithm of the preceding section in Fortran

77. The program is capable of computing either whole or part of the solution, and of

evaluating potential at any point. We used our algorithm to compute the harmonic

measure on Cantor sets with the dimension of support of harmonic measure deter-

mined via the entropy of a set of charges distributed on a Cantor set, the charges

representing the solution of the Laplace equation with unity as the boundary condi-

tion on that Cantor set.

We will need the following terminology to describe our numerical experiments.

1. Hausdorff dimension of Cantor set Ca is given by the formula

D = log 4/log(-). (7.1)

2. Dimension of Support of harmonic measure on C' is given by the formula

d = H/ log(-), (7.2)
a

where H is the entropy of the system.

3. Approximation of entropy H

H = lim HN (7.3)
N-3 o

51



CHAPTER 7. NUMERICAL EXPERIMENTS 52

where
HN = -••ai . log a, (7.4)

H N= N

with {ai} the scaled charge distribution over the system (N1 ai " 1).

We considered fractal boundaries of Cantor type with ratio 0.1, 0.3, and 0.45.

For the first two experiments (a = 0.1,0.3), the potentials on frame boundaries are

represented to double precision while they are represented to 10 digits for the third

experiment (a = 0.45). The size of linear systems inverted directly at the final stage

has been chosen to be m = 256. The constant b in the coefficient matrix A defined

by formula (2.11) is chosen to be

=ff p ln(VF(x- xo) 2 + (y - yo) 2)dxdy

ff Qdxdy

where 0 is a square centered at (x0 , yO) on the finest level of the recursive generation

of L-th approximation of Cantor set Ca (see section 2.1). All calculations have been

conducted on a Sparc II workstation.

The results are summarized in tables 7.1, 7.2, 7.3, 7.2, 7.5, and 7.6. In tables 7.1,

7.3, and 7.5, the first column is the size of the approximation to a Cantor set. The

second column is the number of levels in the generation of a Cantor set. The third

column is the actual CPU time of the fast direct algorithm of the preceding section.

The forth column is either the CPU time or estimated CPU time of the combined

algorithm: the Conjugate Gradient (CG) algorithm combined with the Fast Multipole

Method (FMM) (see [46]). The last column is the estimated timing for the Gaussian

Elimination (of course, it is given here only for comparison purposes).

The following observations can be made from Tables 7.1, 7.3, and 7.5.

1. Although our fast algorithm asymptotically requires O(N) operations, the ac-

tual running time of the algorithm as observed from the numerical experiments

seems to behave like log N, due to the fact that the constant 033 in formula (6.1)

is rather large compared to the constants 01 and 32. The constant /3 in formula
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(6.1) can be substantially reduced either by a better choice of frame boundaries,

or by improving the representation of potentials .

2. For any N > 4096, our algorithm is faster than the combined algorithm (the

CG method combined with the FMM, see [46]).

3. The performance of our algorithm deteriorates with the increase in ratio a as is

expected (see Tables 5.1 and 5.2).

Tables 7.2, 7.4, and 7.6 summarize some of our numerical experiments in which

the dimension of support of harmonic measure was computed. The part A of the

tables is the computed dimension of the support d. The part B of the tables is the

the Richarson extrapolation of the first order in terms of levels by the formula

d = mdm - ndn (7.6)

with dm and dn the dimensions of support at levels m and n respectively. The part

C of the tables is the Richarson extrapolation of the second order in terms of levels

defined by the formula

d = m 2dmdt - n2dt'n (7.7)m 2 - n 2

with din, and di,,, the extrapolated dimensions of support defined by formula (7.6).

The following observations can be made from Tables 7.2, 7.4, and 7.6.

1. The dimension of the support of harmonic measure converges linearly with the

number of levels.

2. Despite numerical problems often associated with the type of Richarson ex-

trapolation described above (see [50]), the experiments did show reasonable

convergence rates: the first order extrapolation in Table 7.4 is consistent with

Carleson theorem (see [12]). However, the situation has to be analyzed carefully.

3. Even though our fast algorithm permits simulations on a very large scale to be

performed, the field being investigated clearly could benefit from the application
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of supercomputers, and possibly parallel machines. Investigation of parallel

implementations of algorithms of the type described above will be reported at

a later date.

For illustration, the dimension of support is plotted as the function of the Haus-

dorff dimension in Figures 7.4, 7.5, 7.7, and 7.7. Charge distributions are also plotted

in Figures 7.8, 7.9, and 7.10 along the horizontal lines on which the charges are

located.

Remark 7.1 The value (7.5) of the constant 5 has been chosen empirically, and no

claim is made here as to its optimality.

The following is a recapitulation of the other notation to be used in the illustration

of onr numerical experiments.

a - ratio for generating a Cantor set.

p - number of Legendre nodes on each side of frame boundaries.

m - size of linear systems inverted directly.

f - precision to which incoming and outgoing potentials are represented.

L - number of levels in the approximation of a Cantor set.

N - size of the linear system (2.10) to be solved, N = 4'.
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_J L

Figure 7.1: Cantor Set with a = 0.1

Example 7.1 Harmonic Measure on Cantor Set Ca with Ratio a = 0.1.

a = 0.1, p = 30, m = 256, F = 10"

N N Levels Tag(Minutes) TcG&FMM(Hours) TGE (Estimated)
4,096 6 6 0.4 19.1 Hours

16,384 7 9 3.3 51 Days
65,536 8 11 26.4 (est.) 9 years

262,144 9 14 211.2 (est.) 572 years
1,048,576 10 19 1689.6 (est.) 366283 years

Table 7.1: Comparison of Timings (a = 0.1)
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Hausdorff Dimension D = 0.602059991327962E + 00

[Level Number L Dimension of Support d
6 0.599329045439459E+00

(A) 7 0.599189754023720E+00
8 0.599085067779161E+00
9 0.599003595888791E+00
10 0.598938407116325E+00

First Order Extrapolation

Level Number L [Dimension of Support d
6,7 0.598354005529286E+00

(B)ll_______________
7,8 0.598352264067248E+00
8,9 0.598351820765831 E+00

9,10 0.598351708164130E+00

Second Order Extrapolation
Level Number LI Dimension of Support d

(C) 6,7,8 0.598347039681135E+00

7,8,9 0.598350269210872E+00
8,9,10 0.598351257757325E+00

Table 7.2: Dimension of Support d on Cantor Set Ca with a = 0.1
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Figure 7.2: Cantor Set with a = 0.3

Example 7.2 Harmonic Measure on Cantor Set Ca with Ratio a = 0.3.

a = 0.3, p = 60, m = 256, f = 10-14

N g Levels Taig(Minutes) I TCG&FMM(Hours) ]TGE (Estimated)

4,096 6 45 1.2 19.1 Hours
16,384 7 67 8.3 51 Days
65,536 8 88 66.7(est.) 9 years

262,144 9 110 533.8(est.) 572 years
1,048,576 10 134 4270.3(est.) 366283 years

Table 7.3: Comparison of Timings (a = 0.3)
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Hausdorff Dimension D = 0.115143328498689E + 01

Level Number L Dimension of Support d
6 0.102592656926789E+01

(A) 7 0.101715537867085E+01
8 0.101051673123065E+01
9 0.100533476169737E+01
10 0.100118336944343E+01

First Order Extrapolation
[Level Number L Dimension of Support d

(B) 6,7 0.964528235088610E+00
7,8 0.964046199149250E+00
8,9 0.963879005431130E+00

9,10 0.963820839157970E+00

Second Order Extrapolation
SLevel Number L - Dimension of Support d

(C) 6,7,8 -0.962600091331170E+00
7,8,9 0.963293827417710E+00

8,9,10 0.963588174065331E+00

Table 7.4: Dimension of Support d on Cantor Set Ca with a = 0.3
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Figure 7.3: Cantor Set with a = 0.45

Example 7.3 Harmonic Measure on Cantor Set Ca with Ratio a = 0.45.

a = 0.45, p = 80, m = 256, c = 10-10.

N N Levels Taig(Minutes) TcG&FMM(Hours) TGE (Estimated)

4,096 6 122 1.6 19.1 Hours
16,384 7 181 13.0 51 Days
65,536 8 240 103.7(est.) 9 years

262,144 9 297 829.3(est.) 572 years
1,048,576 10 360 6634.2(est) 366283 years

Table 7.5: Comparison of Timings (a = 0.45)
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Hausdorff Dimension D = 0.173610644917543E + 01

Level Numbers Dimension of Support7ý
6 0.122269892939995E+01

(A) 7 0.119171383040669E±01 1
8 0.1 16808624449636 E±01
9 0.11'4954943391115E+f01
10 0.113465307668069E+01

First Order Extrapolation
SLevel Number L IDimension of Support d

(B) 6,7 0.100580323644713E+01
7,8 0.100269314312405E+01
8,9 0.100125494922947E+01

9,10 0.100058586160655E+01

Second Order Extrapolation

SLevel Number L I Dimension of Support d I
(C) 6,7,8 0.993362863154809E+00

7,8,9 0.996221270598445E+00
8,9,10 0.997909511114859E+00

Table 7.6: Dimension of Support d on Cantor Set Ca with a = 0.45
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Figure 7.4: Dimension of Support d vs. Hausdorff Dimension D
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Figure 7.5: Dimension of Support d vs. Hausdorff Dimension D

(First Order Extrapolation)



CHAPTER 7. NUMERICAL EXPERIMENTS 63

Y

1.00 _Nlev=8.9.10

Nlev=7.8.9

0.95 Nlev=6.7.8

0.90

0.85

0.80

0.75

0.70

0.65

0.60
X

1.00 1.50

Figure 7.6: Dimension of Support d vs. Hausdorff Dimension D

(Second Order Extrapolation)
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Figure 7.7: Dimension of Support d vs. Hausdorff Dimension D
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Figure 7.8: Charge Distribution for a = 0.1 (N = 4096)
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Figure 7.9: Charge Distribution for a = 0.3 (N = 4096)
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Figure 7.10: Charge Distribution for a = 0.45 (N = 4096)



Chapter 8

Conclusions and Generalizations

We have presented an O(N) direct algorithm for the rapid solution of the Laplace

equation on regions with fractal boundaries. In the algorithm, operators of low rank

are recursively compressed, and the inverse is constructed in a compressed form so

that it can be applied to a vector rapidly. The algorithm is capable of generating only

a part of the solution if desired. The evaluation of potential at any point requires

0(log N) operations.

The fast direct algorithm of this thesis admits far-reaching generalizations. Fol-

lowing are some of the examples.

Harmonic Measure On Cantor Sets In Three Dimensions

It is straightforward to generalize the algorithm of this thesis to solve the

Laplace equation in three dimensions on regions with fractal boundaries. In

R 3 , the behavior of harmonic measure for Cantor sets is completely unknown.

Peter Jones recently raised a question about the determination of the actual val-

ues of the dimension of the support of harmonic measure on fractals of certain

types in R 2 , and conjectured that the dimension of the support in R3 should be

always less than two ([34]). The numerical experiments for the computation of

harmonic measure in two dimensions would provide experience and insights for

the study of harmonic measure on fractals in three dimensions, and eventually

68
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might lead to the understanding of harmonic measure on porous surfaces.

Integral Equations On Fractals

In growth phenomena such as crystallization, electrodeposition, viscous finger-

ing, and diffusion-limited aggregation, the harmonic measure governs the growth

of the fractal surfaces, in addition to describing the distribution of growth prob-

abilities ([56]).

A minor modification of the algor;fhm of this thesis can be used to study the

metric properties of harmonic measure on other types of fractals.

Integral Equations with Other Non-Oscillatory Kernels

It is easy to see that the algorithm of this thesis does not substantially depend

on the fact the kernel in the integral equation being solved satisfies the Laplace

equation. The property of the kernel being used is simply its smoothness away

from the diagonal, and the fact that it is non-oscillatory. Thus, the algorithm

of this thesis can be generalized to a wide class of integral equations both in

two and three dimensions. This work is in progress and will be reported at a

later date.

Integral Equations On Curves in R2 and R3

One of the approaches to the computation of electrostatic fields in the design of

chips and circuits is to formulate the problems as integral equations on curves

either in R2 or R3 with a free-space Green's function as the kernel (see [59] and

[47]). The algorithm of this thesis can be generalized to include fast algorithms

for problems of this type. The new algorithms would have advantages over the

conventional methods (such as moment method, and finite element method)

both in the CPU time requirements, and the accuracy of the solution.
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Appendix A

Measure Theory

In this appendix, we collect relevant facts in the literature about Borel integration,

and harmonic measure. Facts about Borel measure can be found, for example, in [35],

and about harmonic measure in [21], [15], [31], and [55].

A.1 Borel Measure and Integration

Definition A.1 (6-ring) Let RZ be a non-empty family of sets. It is a 6-ring if the

following three conditions hold.

1. For any sets A E 1? and B E 1R,

AUB c- R. (A.1)

2. For any sets A E 1? and B E 1?,

A\B E R. (A.2)

3. For a countable sequence of sets {A,} C R?,

7A5 E R. (A.3)
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In other words, a b-ring is a nonempty family of sets, closed under difference, finite

union, and countable intersection operations.

Definition A.2 (Measure) Suppose that 1Z is a 6-ring. Then a set function

y • +,oo)

is a measure if for any disjoint sequence of sets {An} C 1Z with U An C- 1?,

y (E An) = E p (A.). (A.4)

In other words, a measure is a real, non-negative, and countably additive function on

a 6-ring.

Definition A.3 (Borel Ring and Borel Measure) Suppose that X is a locally compact

Hausdorff space, and 1Z is the 6-ring generated by the family of compact subsets of X.

Then the b-ring 1? is called the Borel b-ring, and a measure on 1Z is called a Borel

measure.

Definition A.4 (Integrable Function) Suppose that X is a locally compact Hausdorff

space, 1?. is a Borel 6-ring, and 1L is a Borel measure on 71.. Then a function f : X -+

R1 is 1i-integrable if there exists a sequence of sets {A,} C 1?, and {an} E R1 such

that

E Ia. nIp(A.) < xo, (A.5)

and for any x E X
00

[f(x)f _ • lanlIXA(x), (A.6)

where XAn is the characteristic function of the set An. The integration of function f

on domain X with respect to the measure p1 is defined by
0o

I fdp = 1im M a,,j P(aj), (A.7)
JX -- n= 1

where the sum satisfies (A.5) with {a,,j} E R1 and sets {AnJ} C ?., and for L almost

all z,
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o'- anj XA ,,,(x) S_ If(x)1, (A .8)

and
O0

lira E ajXAnA.,(x) = f(x). (A.9)
j"*0 n=1

A.2 Harmonic Measure

Definition A.5 Suppose that Q C R2 is a region with F as its boundary, and E is a

closed set on F. Suppose further that u,(E) is the solution of the Dirichlet problem

for Q with the boundary value 1 on E, and 0 on F\E, Then the solution Li(E) is

referred to as the harmonic measure of E at the point z, with respect to Q.

Theorem A.1 pz is a non-negative measure, and/ 1 z(F) = 1.

Theorem A.2 Suppose that p and q are two points in Q. Then there exists a constant

M such that

Ifo(E) an Mmrq(E) (A. 10)

for any measurable set E c r.


